SDSS Technical Publications
Introduction
These technical papers describe various aspects of the technical operation of the original Sloan Digital Sky Survey, the SDSS-II's SEGUE and Supernova surveys, and the SDSS-III surveys. This list of papers is sorted by the phase of SDSS (most recent first), the survey within SDSS, and the technical system that the paper describes.
Outline
SDSS-III
General Summary
D. J. Eisenstein, D. H. Weinberg, E. Agol et al., SDSS-III: Massive Spectroscopic Surveys of the Distant Universe, the Milky Way, and Extra-Solar Planetary Systems,
Astronomical Journal 142 (2011) 72; adsabs:2011AJ....142...72E; doi:10.1088/0004-6256/142/3/72; arXiv:1101.1529.
APOGEE
APOGEE (Apache Point Observatory Galactic Evolution Experiment) is one of the four surveys that make up SDSS-III. Its goal is to survey the entire Galaxy from the central bulge, throughout the disk and into the halo using a high-resolution, near-infrared spectrograpgh. Spectra of more than 100,000 stars will be a powerful source of data for understanding the chemical and kinematical evolution of our home galaxy. APOGEE has been taking data since Spring 2011. Data Release 10 will contain data from the first full year of operations, including commissioning.
Survey
The following technical papers describe aspects of the APOGEE survey, target selection and operations.
S. R. Majewski et al.,
The Apache Point Observatory Galactic Evolution Experiment (APOGEE),
Astronomical Journal, in preparation.
G. Zasowski, J. A. Johnson, P. M. Frinchaboy et al., Target Selection for the Apache Point Observatory Galactic Evolution Experiment (APOGEE),
Astronomical Journal 146 (2013) 81; adsabs:2013AJ....146...81Z; doi:10.1088/0004-6256/146/4/81; arXiv:1308.0351.
Data Reduction and Calibration
The following technical papers describe aspects of the APOGEE survey, target selection and operations.
D. L. Nidever et al.,
Data Reduction for the Apache Point Observatory Galactic Evolution Experiment (APOGEE),
Astronomical Journal, in preparation.
A. E. García Pérez et al.,
The APOGEE Stellar Parameters and Chemical Abundances Pipeline (ASPCAP),
Astronomical Journal, in preparation.
S. Mészáros, C. Allende Prieto, B. Edvardsson et al., New ATLAS9 and MARCS Model Atmosphere Grids for the Apache Point Observatory Galactic Evolution Experiment (APOGEE),
Astronomical Journal 144 (2012) 120; adsabs:2012AJ....144..120M; doi:10.1088/0004-6256/144/4/120; arXiv:1208.1916.
M. Shetrone et al.,
Spectral Linelist Used for the APOGEE Parameters and Chemical Abundances Pipeline (ASPCAP),
Astronomical Journal, in preparation.
V. V. Smith, K. Cunha, M. D. Shetrone et al., Chemical Abundances in Field Red Giants from High-resolution H-band Spectra Using the APOGEE Spectral Linelist,
Astrophysical Journal 765 (2013) 16; adsabs:2013ApJ...765...16S; doi:10.1088/0004-637X/765/1/16; arXiv:1212.4091.
S. Mészáros, J. Holtzman, A. E. García Pérez et al., Calibrations of Atmospheric Parameters Obtained from the First Year of SDSS-III APOGEE Observations,
Astronomical Journal 146 (2013) 133; adsabs:2013AJ....146..133M; doi:10.1088/0004-6256/146/5/133; arXiv:1308.6617.
Spectrograph
The following technical papers describe aspects of the APOGEE instrument system.
J. C. Wilson et al.,
The Apache Point Observatory Galactic Evolution Experiment (APOGEE) high-resolution near-infrared multi-object fiber spectrograph,
Astronomical Journal, in preparation.
J. C. Wilson, F. Hearty, M. F. Skrutskie et al., Performance of the Apache Point Observatory Galactic Evolution Experiment (APOGEE) high-resolution near-infrared multi-object fiber spectrograph,
Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series 8446 (2012) 84460H; adsabs:2012SPIE.8446E..0HW; doi:10.1117/12.927140.
J. C. Wilson, F. Hearty, M. F. Skrutskie et al., The Apache Point Observatory Galactic Evolution Experiment (APOGEE) high-resolution near-infrared multi-object fiber spectrograph,
Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series 7735 (2010) 77351C; adsabs:2010SPIE.7735E..46W; doi:10.1117/12.856708.
J. Arns, J. C. Wilson, M. Skrutskie et al., Development of a large mosaic volume phase holographic (VPH) grating for APOGEE,
Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series 7739 (2010) 773913; adsabs:2010SPIE.7739E..32A; doi:10.1117/12.857623.
B. Blank, C. Henderson, J. C. Wilson et al., APOGEE cryostat design,
Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series 7735 (2010) 773569; adsabs:2010SPIE.7735E.206B; doi:10.1117/12.857095.
S. Brunner, A. Burton, J. Crane et al., APOGEE fiber development and FRD testing,
Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series 7735 (2010) 77356A; adsabs:2010SPIE.7735E.207B; doi:10.1117/12.857223.
BOSS
BOSS Summary
K. S. Dawson, D. J. Schlegel, C. P. Ahn et al., The Baryon Oscillation Spectroscopic Survey of SDSS-III,
Astronomical Journal 145 (2013) 10; adsabs:2013AJ....145...10D; doi:10.1088/0004-6256/145/1/10; arXiv:1208.0022.
MARVELS
SEGUE-2
SDSS-II
SEGUE-1
Introduction
SEGUE (Sloan Extension for Galactic Understanding and Exploration) collected images and spectra of stars in the Milky Way to create a detailed three-dimensional map of our Galaxy. SEGUE obtained images of 3,200 square degrees of sky and spectra of 240,000 stars in the galactic disk and spheroid. Analysis of the spectra revealed the age, composition and phase space distribution of stars within the various Galactic components. More information can be found on the SEGUE web site.
The complete SEGUE dataset was part of the SDSS's Data Release 7, and additional images and spectra taken as part of the SDSS-III's SEGUE-2 extension are available as a part of Data Release 8.
For technical details of the SEGUE survey, see the technical papers below.
Stellar Pipeline I: Overview
Y. S. Lee, T. C. Beers, T. Sivarani et al., The SEGUE Stellar Parameter Pipeline. I. Description and Comparison of Individual Methods,
Astronomical Journal 136 (2008) 2022-2049; adsabs:2008AJ....136.2022L; doi:10.1088/0004-6256/136/5/2022; arXiv:0710.5645.
Stellar Pipeline II: Validation with Star Clusters
Y. S. Lee, T. C. Beers, T. Sivarani et al., The SEGUE Stellar Parameter Pipeline. II. Validation with Galactic Globular and Open Clusters,
Astronomical Journal 136 (2008) 2050-2069; adsabs:2008AJ....136.2050L; doi:10.1088/0004-6256/136/5/2050; arXiv:0710.5778.
Stellar Pipeline III: High-Resolution Spectroscopy of Field Stars
C. Allende Prieto, T. Sivarani, T. C. Beers et al., The SEGUE Stellar Parameter Pipeline. III. Comparison with High-Resolution Spectroscopy of SDSS/SEGUE Field Stars,
Astronomical Journal 136 (2008) 2070-2082; adsabs:2008AJ....136.2070A; doi:10.1088/0004-6256/136/5/2070; arXiv:0710.5780.
Supernova Survey
Introduction
The SDSS Supernova Survey was one of three components of SDSS-II, an extension of the original SDSS. The Supernova Survey was a time-domain survey, involving repeat imaging of the same region of sky every other night, weather permitting. The primary scientific motivation was to detect and measure light curves for several hundred supernovae, to help constrain cosmological models in a redshift range where more data were needed.
The Supernova Survey repeatedly imaged the SDSS Southern Equatorial trip (Stripe 82), an area of sky 2.5° wide by 120° long (-1.25 ≤ Dec ≤ 1.25, 310 < RA < 60). Every night, weather permitting, for three months in each of three years (Sept/Oct/Nov 2005-2007), the SDSS camera imaged that area. All these images are publicly available as FITS files from the SDSS Data Archive Server, and catalogs derived from the images are available from the Stripe 82 Catalog Archive Server. The SNANA supernova analysis package used by the team is publicly available on the SDSS Supernova Survey website.
Over the course of the three years, the SDSS Supernova Survey discovered and measured multi-band lightcurves for about 500 spectroscopically confirmed Type Ia supernovae in the redshift range z = 0.05-0.4. Additional light curves are available for a few hundred more Type Ia supernovae that could not be spectroscopically confirmed as supernovae, but for which host galaxy redshifts are known. The survey also discovered about 80 spectroscopically confirmed core-collapse supernovae (supernova types Ib/c and II).
For technical details of the SDSS supernova survey, see the technical papers below.
Technical Summary
J. A. Frieman, B. Bassett, A. Becker et al., The Sloan Digital Sky Survey-II Supernova Survey: Technical Summary,
Astronomical Journal 135 (2008) 338-347; adsabs:2008AJ....135..338F; doi:10.1088/0004-6256/135/1/338; arXiv:0708.2749.
Selection of Candidates
M. Sako, B. Bassett, A. Becker et al., The Sloan Digital Sky Survey-II Supernova Survey: Search Algorithm and Follow-Up Observations,
Astronomical Journal 135 (2008) 348-373; adsabs:2008AJ....135..348S; doi:10.1088/0004-6256/135/1/348; arXiv:0708.2750.
SDSS-I
General Summary
D. G. York, J. Adelman, J. E. Anderson Jr. et al., The Sloan Digital Sky Survey: Technical Summary,
Astronomical Journal 120 (2000) 1579-1587; adsabs:2000AJ....120.1579Y; doi:10.1086/301513; arXiv:astro-ph/0006396.
Telescope
J. E. Gunn, W. A. Siegmund, E. J. Mannery et al., The 2.5 m Telescope of the Sloan Digital Sky Survey,
Astronomical Journal 131 (2006) 2332-2359; adsabs:2006AJ....131.2332G; doi:10.1086/500975; arXiv:astro-ph/0602326.
Imaging
Camera
J. E. Gunn, M. Carr, C. Rockosi et al., The Sloan Digital Sky Survey Photometric Camera,
Astronomical Journal 116 (1998) 3040-3081; adsabs:1998AJ....116.3040G; doi:10.1086/300645; arXiv:astro-ph/9809085.
Filter Definitions
M. Fukugita, T. Ichikawa, J. E. Gunn et al., The Sloan Digital Sky Survey Photometric System,
Astronomical Journal 111 (1996) 1748; adsabs:1996AJ....111.1748F; doi:10.1086/117915.
Photometric Monitoring System
D. W. Hogg, D. P. Finkbeiner, D. J. Schlegel et al., A Photometricity and Extinction Monitor at the Apache Point Observatory,
Astronomical Journal 122 (2001) 2129-2138; adsabs:2001AJ....122.2129H; doi:10.1086/323103; arXiv:astro-ph/0106511.
Photometric Quality Assessment
Ž. Ivezić, R. H. Lupton, D. Schlegel et al., SDSS data management and photometric quality assessment,
Astronomische Nachrichten 325 (2004) 583-589; adsabs:2004AN....325..583I; doi:10.1002/asna.200410285; arXiv:astro-ph/0410195.
Photometric System
J. A. Smith, D. L. Tucker, S. Kent et al., The u'g'r'i'z' Standard-Star System,
Astronomical Journal 123 (2002) 2121-2144; adsabs:2002AJ....123.2121S; doi:10.1086/339311; arXiv:astro-ph/0201143.
Monitor Telescope Pipeline
D. L. Tucker, S. Kent, M. W. Richmond et al., The Sloan Digital Sky Survey monitor telescope pipeline,
Astronomische Nachrichten 327 (2006) 821; adsabs:2006AN....327..821T; doi:10.1002/asna.200610655; arXiv:astro-ph/0608575.
Ubercalibration
N. Padmanabhan, D. J. Schlegel, D. P. Finkbeiner et al., An Improved Photometric Calibration of the Sloan Digital Sky Survey Imaging Data,
Astrophysical Journal 674 (2008) 1217-1233; adsabs:2008ApJ...674.1217P; doi:10.1086/524677; arXiv:astro-ph/0703454.
Astrometry
J. R. Pier, J. A. Munn, R. B. Hindsley et al., Astrometric Calibration of the Sloan Digital Sky Survey,
Astronomical Journal 125 (2003) 1559-1579; adsabs:2003AJ....125.1559P; doi:10.1086/346138; arXiv:astro-ph/0211375.
Magnitude System
If you are studying any objects near the magnitude limit of the survey, you should mention that SDSS uses asinh magnitudes, and reference the paper defining this magnitude system:
R. H. Lupton, J. E. Gunn & A. S. Szalay, A Modified Magnitude System that Produces Well-Behaved Magnitudes, Colors, and Errors Even for Low Signal-to-Noise Ratio Measurements,
Astronomical Journal 118 (1999) 1406-1410; adsabs:1999AJ....118.1406L; doi:10.1086/301004; arXiv:astro-ph/9903081.
Target Selection
If you are dealing with the quasar or galaxy samples, you should reference the corresponding target selection papers from the list below.
Main Galaxy Sample
M. A. Strauss, D. H. Weinberg, R. H. Lupton et al., Spectroscopic Target Selection in the Sloan Digital Sky Survey: The Main Galaxy Sample,
Astronomical Journal 124 (2002) 1810-1824; adsabs:2002AJ....124.1810S; doi:10.1086/342343; arXiv:astro-ph/0206225.
Luminous Red Galaxy (LRG) Sample
D. J. Eisenstein, J. Annis, J. E. Gunn et al., Spectroscopic Target Selection for the Sloan Digital Sky Survey: The Luminous Red Galaxy Sample,
Astronomical Journal 122 (2001) 2267-2280; adsabs:2001AJ....122.2267E; doi:10.1086/323717; arXiv:astro-ph/0108153.
Quasar Sample
G. T. Richards, X. Fan, H. J. Newberg et al., Spectroscopic Target Selection in the Sloan Digital Sky Survey: The Quasar Sample,
Astronomical Journal 123 (2002) 2945-2975; adsabs:2002AJ....123.2945R; doi:10.1086/340187; arXiv:astro-ph/0202251.
Tiling
If the tiling procedure is at all important to your analysis, you should also reference the tiling paper.
M. R. Blanton, H. Lin, R. H. Lupton et al., An Efficient Targeting Strategy for Multiobject Spectrograph Surveys: the Sloan Digital Sky Survey ``Tiling'' Algorithm,
Astronomical Journal 125 (2003) 2276-2286; adsabs:2003AJ....125.2276B; doi:10.1086/344761; arXiv:astro-ph/0105535.
Spectrograph
Spectrograph Hardware
S. A. Smee, J. E. Gunn, A. Uomoto et al.,
The Multi-Object, Fiber-Fed Spectrographs for SDSS and the Baryon Oscillation Spectroscopic Survey,
Astronomical Journal (2013) accepted; arXiv:1208.2233.
Spectral Classifications
A. S. Bolton, D. J. Schlegel, É. Aubourg et al., Spectral Classification and Redshift Measurement for the SDSS-III Baryon Oscillation Spectroscopic Survey,
Astronomical Journal 144 (2012) 144; adsabs:2012AJ....144..144B; doi:10.1088/0004-6256/144/5/144; arXiv:1207.7326.